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FLOW OF WATER INTO A HORIZONTAL TUBULAR DRAIN IN A PRESSURIZED TWQ-LAYER STRATUM

OF LIMITED THICKNESS

S. V. Koval'chuk and A, Ya. Oleinik

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 129-132, 1966

Liu [1] has discussed the particular case of flow into a tubular
drain in a two-layer stratum of limited thickness, the top of the
upper layer being an equipotential (bottom of a reservoir). Here we
consider the particular case where the influx area has a rectangular
edge (Fig. 1).

Fig, 1

At point (I, b) in the upper layer we place the drain (sink), the
flow rate being g. To satisfy the boundary condition at the source for
X = 0 we place to the left of the axis a symmetrical source of equal
flow rate. The final solution is obtained by sumuming the solutions for
sink and source.

The complex velocity in the upper layer is
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while that in the lower layer is

[oe]
wr = [ @6 + Ba (@) %] da, @
0
The quantities Aj(e), Ag(e), By(or), Ba(o) of (1) and (2) are
complex functions of the real variable c,
The vertical velocity must be zero at the impermeable boundaries
of the two layers,

Im (wy) =0 for y =0, Im (wy) = 0 for y = — m,,
so from (1) and (2) we get
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To be able to use the conditions at the boundary between the
layers, we represent the main part of the expression for w; as a
definite integral:
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The above transformations give the expressions for the complex
velocities as
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The normal component of the velocity must be continuous at
the interface, while the tangential components are proportional
to the filtration coefficients

Im (w,) = Im (w1), Kk Re (wy) = k; Re (zy) for y = — my.

From (3), after satisfying the conditions at the interface, we get
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In (5) and (6) we make the substitutions
sinal + icosal= ie— %, sinal — icosal = — ie®,
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Fig. 2

The expression for the complex velocity in the upper region
becomes
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Expression (8) may [1] be put as
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in which my is the largest common factor of m; and mg,

my

p=-t, p= % (P1,p2 are integers),
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so series N)(cr) converges. we put
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in (7) to get
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Equation (9) has to be integrated to give the complex potential,
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in which Wyis a complex quantity.
Separating the real parts, we get the head due to the flow rate
q in the upper layer at (I, —ib),
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Similarly we get the head due to the source flow rate —gq placed

in the upper layer at (-1, —ib):
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Summation of (11) and (12) gives the final solution,

h:hc-{-hu:

=_49 {n [(z—1P+(y LI I(=— P+ =8P
4nky =+ O+ + 0P U=+ 5 + (y — b))

e,
1

X g LE— D (y + 2nmo —— BP [(2— 1) + (y -+ 2nmo + B)']
=+ 07+ (v + 20me — BP] [(z + 1) + (y + 2nmo +- B

[(z— 1P + (y — 2nmq 4 B [(z — 1)* + (y — 2nme — b)?]
X {<z+z>’+(y—ano+b>'1[(x+t>2+(y—2nmo—b>’1}+C 13

To satisfy the conditionh = H at x = 0 we must put C = H.
Let the head at the edge of the tubular drain (radius ry) be hs.
Then, putting x =7 — rpand y = —b in the equartion, we have
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From (14), with 1y < mgand ry < I, we get the flow rate q
per unit length of drain as
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The drain lies at the top of the upper layer when b = 0, and then
the formula for the flow rate is

g =nky (H— ho)[ln—-— - Ec ln(i + ngmaz ﬂ_l (16)

If the drain lies in the lower layer, the above relationships
are used, but with the disposition as in Fig. 2, which is the mirror
image of the previous scheme.

The following are particular cases. If mp~> = (infinitely thick
lower layer),
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For kp =0, A =1 we get from (17) and (18) or (19) and (20) the
known relations for the specific flow rate of a tubular drain in a REFERENCES
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